Table of Contents
Ans.(b)
Explanation:
\tan^{-1} \left(\tan \dfrac{3π}{5}\right)\\
This can be written as:
\tan^{-1} \left(\tan \dfrac{3π}{5}\right) = \tan^{-1} \left(\tan\left[π – \dfrac{2π}{5}\right]\right)\\[4.5 bp]
= \tan^{-1} \left(- \tan \dfrac{2π}{5}\right) \{\text{since }\tan(π – x) = -\tan x\}\\[4.5 bp]
= –\tan^{-1} \left(\tan \dfrac{2π}{2}\right)\\[4.5 bp]
= –\dfrac{2π}{5}\\[4.5 bp]
Ans. (d)
Explanation:
\sin\left[\dfrac{π}{3} – \sin^{-1}\left(-\dfrac{1}{2}\right)\right]\\[4.5 bp]
= \sin\left[\dfrac{π}{3} – \sin^{-1}\left[\sin \left(-\dfrac{π}{6}\right)\right]\right]\\[4.5 bp]
\sin\left[\dfrac{π}{3} – \left(-\dfrac{π}{6} \right)\right]\\[4.5 bp]
= \sin\left(\dfrac{π}{3} + \dfrac{π}{6}\right)\\[4.5 bp]
= \sin \dfrac{π}{2}\\[4.5 bp]
= 1
Explanation:
\text{We have,} \tan^{-1} (\sqrt{3}) – \cot^{-1} (-\sqrt{3})\\[4.5 bp]
= \tan^{-1} (\sqrt{3}) – \{π – \cot^{-1} (\sqrt{3})\} \\[4.5 bp]
[∵ \cot^{-1} (- x) = π – \cot^{-1} x; x ∈ R]\\[4.5 bp]
= \tan^{-1}\sqrt{3} – π + \cot^{-1}\sqrt{3}\\[4.5 bp]
= (\tan^{-1} \sqrt{3} + \cot^{-1} \sqrt{3}) – π\\[4.5 bp]
= -\dfrac{π}{2}\\[4.5 bp]
Explanation:
First we check the given angle lies in the principal value branch. If it is so, then use the property \cos^{-1} (\cos θ) = θ, ∀θ ∈ [0, 180°]. Otherwise reduce the angle such that it lies in the principal value branch.
Explanation:
Let us take, \text{y = cos}^{-1} \left(\dfrac{1}{2} \right) \\
This can be written as:
\\ \cos\space y = \left( \dfrac{1}{2} \right)\\[4.5 bp]
\cos \space y = \cos \left( \dfrac{\pi }{3}\right).\\
Thus, the range of principal value of \cos^{-1} \text{is [0, }\pi]\\
Therefore, the principal value of
\cos^{-1} \left(\dfrac{1}{2}\right) \space \text{is } \dfrac{\pi}{3}.
Chapter No. | Chapter Name |
---|---|
Chapter 1 | Relations and Functions |
Chapter 2 | Inverse Trigonometric Functions |
Chapter 3 | Matrices |
Chapter 4 | Determinants |
Chapter 5 | Continuity and Differentiability |
Chapter 6 | Applications of Derivatives |
Chapter 7 | Integrals |
Chapter 8 | Applications of the Integrals |
Chapter 9 | Differential Equations |
Chapter 10 | Vectors |
Chapter 11 | Three - dimensional Geometry |
Chapter 12 | Linear Programming |
Chapter 13 | Probability |
Chapter Wise Important Questions for CBSE Board Class 12 Maths |
---|
Relations and Functions |
Inverse Trigonometric Functions |
Matrices |
Determinants |
Continuity and Differentiability |
Applications of Derivatives |
Integrals |
Applications of the Integrals |
Differential Equations |
Vectors |
Three - dimensional Geometry |
Linear Programming |
Probability |
CBSE Important Questions Class 10
ICSE Important Questions Class 10
CBSE Important Questions Class 10
ICSE Important Questions Class 10