Table of Contents
Ans. (c) \dfrac{2x}{log_e2}\\[2.5 bp]
Explanation:
We know that differentiation is the inverse process of integration.
\\ \left(\dfrac{d}{dx}\right)\left(\dfrac{2x}{\text{log}_e2}\right) = \left(\dfrac{1}{log_e2}\right).2^x. \text{log}_e2 = 2^x.
Ans. (b) -cot x – x + C
Explanation:
We know that \cot^2 x = \cosec^2x – 1\\[4.5 bp]
∫\cot²x \space dx = ∫ (\cosec^2x – 1) dx = -\cot x - x + C. [\text{Since, }∫ \cosec^2x \text{ dx = -} \cot x + c]\\[2.5 bp]
Hence, the correct answer is option (b) -cot x – x + C.
Ans: (a)\dfrac{π}{2}
\\[2.5 bp]
Explanation:
\int\limits_0^{\pi} \text{sin 2x dx =} \left( \dfrac{1}{2}\right) \int\limits_0^\pi (1 - \text{cos 2x})\text{ dx}\\
Now, integrate the function and apply the limits, we get
\\
\int\limits_0^{\pi} \text{sin}^2 \text{x dx = } \left( \dfrac{1}{2}\right)(π-0) =\dfrac{π}{2}.\\
Hence, option (a) \dfrac{π}{2} is the correct answer.
Explanation:
∫ \sec²(7 – 4x)dx = a \tan (7 – 4x) + C\\[4.5 bp]
∫ \sec²(7 – 4x)dx = \dfrac{[tan (7 - 4x)]}{-4} + C\\[4.5 bp]
∫ \sec²(7 – 4x)dx = \left(-\dfrac{1}{4}\right) \tan (7-4x) + C\\[4.5 bp]
\text{Hence, the value of a is -}\dfrac{1}{4}.
Explanation:
\int\limits_0^2 \text{x}^2 \text{dx} = \left[\dfrac{x^3}{3}\right]^2_0 \\ Now, apply the limits, we get
\\[2.5 bp] \int\limits_0^2 \text{x}^2 \text{dx} = \left(\dfrac{2^3}{3}\right) - 0 = \dfrac{8}{3}
Chapter No. | Chapter Name |
---|---|
Chapter 1 | Relations and Functions |
Chapter 2 | Inverse Trigonometric Functions |
Chapter 3 | Matrices |
Chapter 4 | Determinants |
Chapter 5 | Continuity and Differentiability |
Chapter 6 | Applications of Derivatives |
Chapter 7 | Integrals |
Chapter 8 | Applications of the Integrals |
Chapter 9 | Differential Equations |
Chapter 10 | Vectors |
Chapter 11 | Three - dimensional Geometry |
Chapter 12 | Linear Programming |
Chapter 13 | Probability |
Chapter Wise Important Questions for CBSE Board Class 12 Maths |
---|
Relations and Functions |
Inverse Trigonometric Functions |
Matrices |
Determinants |
Continuity and Differentiability |
Applications of Derivatives |
Integrals |
Applications of the Integrals |
Differential Equations |
Vectors |
Three - dimensional Geometry |
Linear Programming |
Probability |
CBSE Important Questions Class 10
ICSE Important Questions Class 10
CBSE Important Questions Class 10
ICSE Important Questions Class 10