Table of Contents
Ans. (a) f(x) is continuous at x = k
Explanation:
The given function is, f(x) = x
At x = k, f(k) = k
\lim\limits_{x \rightarrow k} f(x) = \lim\limits_{x \rightarrow k} (x) = k\\[4.5 bp]
∴ \lim\limits_{x \rightarrow k}f(x) = f(k)\\[4.5 bp]
∴ f(x) is continuous at x = k.
Ans. (c) 4a
Explanation:
Given that, y = ax^2+b\\[4.5 bp]
\text{Then, } \dfrac{dy}{dx} = 2ax\\[4.5 bp]
\text{At x }= 2, \dfrac{dy}{dx} = 2(a)(2) = 4a
Explanation:
For f(x) to be continuous at x = 0,
f(0) = \lim\limits_{x \rightarrow 0}f(x)\\[4.5 bp]
\text{Therefore, f(0)} = \lim\limits_{x \rightarrow 0} \dfrac{[ln(1+ax) - ln(1-bx)]}{x} \\[4.5 bp]
\text{By using }\lim\limits_{x \rightarrow 0} \dfrac{[ln(1+x)]}{x} = 1, we get
f(0) = a + b.
Explanation:
Given: x^y. y^x = 16\\
Now, take log on both sides, we get
\text{log x}^y +\text{ log }y^x = \text{log 16}\\
y log x + x log y = log 16
Differentiate with respect to x, we get
\left(\dfrac{y}{x}\right)\text{ + log x }\left(\dfrac{dy}{dx}\right) + \left(\dfrac{y}{x}\right) \left(\dfrac{dy}{dx}\right) + \text{log y = 0}\\[4.5 bp]
\text{Hence, }\dfrac{dy}{dx} = – \left(\dfrac{y}{x}\right)\left[\dfrac{\text{(y + x log y)}}{\text{(x + y log x)}}\right]\\[4.5 bp]
\text{Therefore, } \dfrac{dy}{dx} at (2, 2) = -1.
Explanation:
\text{ y }= \sqrt{[sin x + y]} \\
Now, take square on both sides,
y^2 = \text{sin x + y}\\[4.5 bp]
Differentiating with respect to x, we get
\text{2y} \left(\dfrac{dy}{dx} \right)\text{ = cos x }+ \dfrac{dy}{dx}\\[4.5 bp]
\text{Hence, 2y }\left(\dfrac{dy}{dx} \right) – \left(\dfrac{dy}{dx} \right) \text{= cos x}\\[4.5 bp]
\left(\dfrac{dy}{dx} \right) (2y-1) = \text{cos x}\\[4.5 bp]
\text{Hence, }\dfrac{dy}{dx} = \dfrac{\text{cos x}}{\text{(2y-1)}}.
| Chapter No. | Chapter Name |
|---|---|
| Chapter 1 | Relations and Functions |
| Chapter 2 | Inverse Trigonometric Functions |
| Chapter 3 | Matrices |
| Chapter 4 | Determinants |
| Chapter 5 | Continuity and Differentiability |
| Chapter 6 | Applications of Derivatives |
| Chapter 7 | Integrals |
| Chapter 8 | Applications of the Integrals |
| Chapter 9 | Differential Equations |
| Chapter 10 | Vectors |
| Chapter 11 | Three - dimensional Geometry |
| Chapter 12 | Linear Programming |
| Chapter 13 | Probability |
| Chapter Wise Important Questions for CBSE Board Class 12 Maths |
|---|
| Relations and Functions |
| Inverse Trigonometric Functions |
| Matrices |
| Determinants |
| Continuity and Differentiability |
| Applications of Derivatives |
| Integrals |
| Applications of the Integrals |
| Differential Equations |
| Vectors |
| Three - dimensional Geometry |
| Linear Programming |
| Probability |
CBSE Important Questions Class 10
ICSE Important Questions Class 10
CBSE Important Questions Class 10
ICSE Important Questions Class 10