Table of Contents
Ans. (d)\space \dfrac{9}{8} \text{sq. units} \\
Explanation:
For the curves x^2 \text{= y and x = 4y - 2,} the points of intersection are x = -1 and x = 2.
Hence, the required area, A = -\int\limits_1^2 \left\{\left[\dfrac{\text{(x + 2)}}{4}\right]- \left[\dfrac{x^2}{4} \right]\right\}\text{ dx}\\
Now, integrate the function and apply the limits, we get
\text{A = } \left( \dfrac{1}{4}\right) \left[\left( \dfrac{10}{3}\right)- \left( \dfrac{-7}{6}\right) \right] \\[4.5 bp]
\text{A = }\left( \dfrac{1}{4}\right)\left( \dfrac{9}{2}\right)= \left( \dfrac{9}{8}\right) \text{sq. units}
Ans. (c) \dfrac{45}{4}
Explanation:
Given curve,\text{ y = }x^3\text{ or x =} \sqrt[3]{y}.\\
Hence, the required area,
\\ A = \int\limits_1^8 \sqrt[3]{y} \text{ dy} \\[4.5 bp]
A = \left[\dfrac{(y^{\frac{3}{4}})}{\left(\dfrac{4}{3}\right)}\right]_1^8 \\
Now, apply the limits, we get
A = \left(\dfrac{3}{4}\right)(16-1)\\[4.5 bp]
A = \left(\dfrac{3}{4}\right)(15) = \dfrac{45}{4}.
Explanation:
Given: y^2\text{ = x}\\
Hence, the required area, A = \int\limits_2^4 y^2 \text{ dy}\\[4.5 bp]
A = \left[\dfrac{y^3}{3}\right]_2^4\\[4.5 bp]
A = \left(\dfrac{4^3}{3}\right) – \left(\dfrac{2^3}{3}\right)\\[4.5 bp]
A = \left(\dfrac{64}{3} \right) – \left(\dfrac{8}{3}\right)\\[4.5 bp]
A = \dfrac{56}{3}\text{ sq. units.}
Explanation:
Required Area, A = \int\limits_0^{2π} \text{|sin x| dx}\\[4.5 bp]
\text{A = } \int\limits_0^π \text{sin x dx +} \int\limits_0^{2π} \text{(-sin x) dx}\\
Now, substitute the limits, we get
A= 4 sq. units.
Explanation:
Given circle equation is x^2 + y^2 =1, whose centre is (0, 0) and radius is 1.
Therefore, \space y^2 = 1 -\space x^2 \\[4.5 bp]
y = \sqrt{(1\space -\space x^2)} \\[4.5 bp]
Hence, the required area,\space A = 4\int\limits_0^1\sqrt{(1\space - \space x^2)}\text{ dx} \\[4.5 bp]
Now, integrate the function and apply limits, we get
\text{A = 4}\left(\dfrac{1}{2} \right)\left(\dfrac{π}{2}\right) \\[4.5 bp]
A = π sq. units
| Chapter No. | Chapter Name |
|---|---|
| Chapter 1 | Relations and Functions |
| Chapter 2 | Inverse Trigonometric Functions |
| Chapter 3 | Matrices |
| Chapter 4 | Determinants |
| Chapter 5 | Continuity and Differentiability |
| Chapter 6 | Applications of Derivatives |
| Chapter 7 | Integrals |
| Chapter 8 | Applications of the Integrals |
| Chapter 9 | Differential Equations |
| Chapter 10 | Vectors |
| Chapter 11 | Three - dimensional Geometry |
| Chapter 12 | Linear Programming |
| Chapter 13 | Probability |
| Chapter Wise Important Questions for CBSE Board Class 12 Maths |
|---|
| Relations and Functions |
| Inverse Trigonometric Functions |
| Matrices |
| Determinants |
| Continuity and Differentiability |
| Applications of Derivatives |
| Integrals |
| Applications of the Integrals |
| Differential Equations |
| Vectors |
| Three - dimensional Geometry |
| Linear Programming |
| Probability |
CBSE Important Questions Class 10
ICSE Important Questions Class 10
CBSE Important Questions Class 10
ICSE Important Questions Class 10